Partitions of some planar graphs into two linear forests
نویسندگان
چکیده
A linear forest is a forest in which every component is a path. It is known that the set of vertices V (G) of any outerplanar graph G can be partitioned into two disjoint subsets V1, V2 such that induced subgraphs 〈V1〉 and 〈V2〉 are linear forests (we say G has an (LF ,LF)partition). In this paper, we present an extension of the above result to the class of planar graphs with a given number of internal vertices (i.e., vertices that do not belong to the external face at a certain fixed embedding of the graph G in the plane). We prove that there exists an (LF ,LF)-partition for any plane graph G when certain conditions on the degree of the internal vertices and their neighbourhoods are satisfied.
منابع مشابه
Partitions of Graphs into Trees
In this paper, we study the k-tree partition problem which is a partition of the set of edges of a graph into k edge-disjoint trees. This problem occurs at several places with applications e.g. in network reliability and graph theory. In graph drawing there is the still unbeaten (n − 2) × (n − 2) area planar straight line drawing of maximal planar graphs using Schnyder’s realizers [15], which a...
متن کاملOn isomorphic linear partitions in cubic graphs
A linear forest is a graph that connected components are chordless paths. A linear partition of a graph G is a partition of its edge set into linear forests and la(G) is the minimum number of linear forests in a linear partition. It is well known that la(G) = 2 when G is a cubic graph and Wormald [17] conjectured that if |V (G)| ≡ 0 (mod 4), then it is always possible to find a linear partition...
متن کاملThree ways to cover a graph
We consider the problem of covering a host graph G with several graphs from a fixed template class T . The classical covering number of G with respect to T is the minimum number of template graphs needed to cover the edges of G. We introduce two new parameters: the local and the folded covering number. Each parameter measures how far G is from the template class in a different way. Whereas the ...
متن کاملOn linear arboricity of cubic graphs
A linear forest is a graph in which each connected component is a chordless path. A linear partition of a graph G is a partition of its edge set into linear forests and la(G) is the minimum number of linear forests in a linear partition. When each path has length at most k a linear forest is a linear k-forest and lak(G) will denote the minimum number of linear k-forests partitioning E(G). We cl...
متن کاملCovering planar graphs with degree bounded forests
We prove that every planar graphs has an edge partition into three forests, one having maximum degree 4. This answers a conjecture of Balogh et al. (J. Combin. Theory B. 94 (2005) 147-158).We also prove that every planar graphs with girth g ≥ 6 (resp. g ≥ 7) has an edge partition into two forests, one having maximum degree 4 (resp. 2).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 17 شماره
صفحات -
تاریخ انتشار 1997